TECHNICAL INFORMATION

There are several factors that are inseparable when selecting working magnification. As magnification increases, field of view and working distance decrease.

A range of objective lens options ensure optimum results for any application, whether for high magnification, high precision detailed inspections, or for manipulation, re-work and assembly tasks requiring an extra long working distance.

Precision objective lenses

Ultra-high resolution and contrast, optimised for precision magnification work with definition excellence.

Wide-field objective lenses

Wide field of view, provides maximum flexibility and large zoom range. Suitable for large area subjects.

Micro objective lenses

High optical magnification of very small subject areas and details.

Objective lens Precision objective lenses	Magnification zoom range*	Working distance	Field of view at min.zoom	Field of view at max.zoom
0.45x	$2.3 x-68 x$	160 mm	$241 \mathrm{~mm} \times 134 \mathrm{~mm}$	$7.8 \mathrm{~mm} \times 4.2 \mathrm{~mm}$
0.62x	$3.1 \mathrm{x}-93.7 \mathrm{x}$	106 mm	$173 \mathrm{~mm} \times 96 \mathrm{~mm}$	$5.5 \mathrm{~mm} \times 3.1 \mathrm{~mm}$
1.0x	$5 \mathrm{x}-151.2 \mathrm{x}$	85 mm	$88 \mathrm{~mm} \times 57 \mathrm{~mm}$	$3.5 \mathrm{~mm} \times 2 \mathrm{~mm}$
1.5x	$7.6 x-226.8 x$	43 mm	$45 \mathrm{~mm} \times 36 \mathrm{~mm}$	$2.3 \mathrm{~mm} \times 1.2 \mathrm{~mm}$
2.0x	10x-302.4x	29 mm	$37 \mathrm{~mm} \times 27 \mathrm{~mm}$	$1.5 \mathrm{~mm} \times 1.0 \mathrm{~mm}$
Wide-field objective lenses				
2 dioptre	0.8x-24x	440 mm	$660 \mathrm{~mm} \times 370 \mathrm{~mm}$	$21.5 \mathrm{~mm} \times 12.0 \mathrm{~mm}$
3 dioptre	1.15x-32.6x	300 mm	$370 \mathrm{~mm} \times 210 \mathrm{~mm}$	$14.7 \mathrm{~mm} \times 8.4 \mathrm{~mm}$
4 dioptre	1.71x-51.41x	245 mm	$293 \mathrm{~mm} \times 171 \mathrm{~mm}$	$10 \mathrm{~mm} \times 5.5 \mathrm{~mm}$
5 dioptre	$2.12 x-65.5 x$	197 mm	$232 \mathrm{~mm} \times 135 \mathrm{~mm}$	$8 \mathrm{~mm} \times 4.5 \mathrm{~mm}$
Micro objective lenses				
5 x	250x-362x	2.0 mm	$2.2 \mathrm{~mm} \times 1.2 \mathrm{~mm}$	$1.4 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
10x	500x-725x	2.1 mm	$1.1 \mathrm{~mm} \times 0.6 \mathrm{~mm}$	$0.7 \mathrm{~mm} \times 0.4 \mathrm{~mm}$
*Using a 24 inch screen				

360° Rotating viewer

Adding an extra dimension to standard 2D imaging, the 360° rotating viewer provides both direct and rotating oblique views of the subject and utilises the power of motion to enhance a users three dimensional understanding of the subject. Rotating around the centre of the image, the 34° degree oblique view allows views around the inside of holes or around the sides of raised components and solder joints.

